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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

- TECENICAL NOTE 235l

A NUMERICAL APPROACH TO THE INSTABILITY
PROBLEM OF MONOCOQUE CYLINDERS

By Bruno A. Boley, Joseph Kempner
and J. Mayers

SUMMARY

Two closely related numerical methods which employ operations tables
have been developed and used in the calculation of the buckling load of
a monocoque cylinder subjected to pure bending. They are based on the
assumption of a simplified structure which includes only the most highly
compressed portion of the cylinder. The first method makes use of a
1li-row determinant, whereas the second method requires the solution of
a single 10-row determinant. The buckling loads of three cylinders with
widely different characteristics were calculated by these methods.
Reasonable agreement with experiment was obtained.

A procedure similar to the first method was developed for the cal-
culation of the buckling load of a cylinder with a cutout. A limited
experimental check was obtained. ‘

INTRODUCTION

The calculation of the buckling loads of reinforced monocoque
cylinders is a problem of some importance in airplane stress analysis.
Existing theoretical methods for determining such buckling loads,
including energy methods, are, in general, lengthy and difficult to apply.
A numerical procedure is therefore developed in this report in order to
simplify the calculations.

Southwell's relaxation procedure (reference 1) and, in general, methods
which make use of an operations table (see appendix A) have been success-
ful in the solution of a variety of stress-distribution problems. It was
therefore natural that an attempt be made to adapt these methods to
buckling-load calculations. In reference 2 three closely related methods
for determining the buckling load from an operations table were established
and described. A limited experimental check was also obtained. In refer—
ence 2 the three methods were called the Determinant, Energy, and .
Convergence Methods. In this paper, the first two of these methods, along
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with slight modifications, are used to calculate the buckling load in
pure bending of four monocoque cylinders with widely different charac-
teristics, one of which had a symmetric cutout on the compression side.
1t was found that the buckling loads could be conveniently calculated
when the actual cylinder was replaced by a simplified structure pre-
serving the main characteristics of the original cylinder.

A twofold purpose is thus fulfilled by this investigation. In the
first place, a method which is fairly short and reasonably accurate is
developed for the calculation of the buckling load of a monocogque cylinder.
Secondly, a further experimental check of the methods of reference 2 is
afforded by a comparison of the theoretical and experimental buckling
loads for the cylinders considered.

The authors are indebted to Dr. N. J. Hoff for his advice and help-
ful criticism, and to Messrs. J. Mele, B. Erickson, and E. B. Beck for
their part in the experimental phase of the investigation. The work was
sponsored by and conducted with financial aid from the National Advisory
Committee for Aeronautics.

CALCULATION OF BUCKLING LOAD OF CYLINDERS WITHOUT CUTOUT

Methods of Calculation

The buckling loads were calculated for three cylinders, the charac-
teristics of which are given in table I and figure 1. The methods of
calculation which appeared most convenient are described below. These
methods yield the load P in the most highly compressed stringer at the
instant of buckling of the cylinder as a whole. From this load the total
applied bending moment can be calculated, provided the stress distribution
is known. The validity and the accuracy of the methods are discussed in
the next section. Basic theoretical considerations underlying the cal-
culations may be found in reference 2 and in appendix A. A numerical
example is given in appendix B.

Simplified-cylinder solution.- Let the cylinder under consideration

be replaced by the simplified structure of figure 2. The operations

table corresponding to this structure is that presented in table II. All
symbols which appear in this table are defined in appendix C. It should

be noticed that the operations table is symmetrical about its main diagonal.
The buckling load P has the value which will make the determinant repre-
sented by table II equal to zero. It may be most conveniently obtained by
evaluating numerically the determinant for several values of P, plotting
the determinant values against P, and reading off the load at which the
determinant is zero. If the load P is lower than the first buckling
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load, the determinant will be positive (because it contains an even
number of rows; see reference 2). If the determinants are evaluated by
the method of reference 3, that portion of the so-called "auxiliary -
matrix" which corresponds to the first nine rows of table II need be
considered only once, since it ‘is independent of the load P.

Solution with assumed displacements.- The above method can be sim-

plified by assuming the following expressions for the radial displace-
ments r and the rotations my of the most highly compressed stringer

(stringer 1, fig. 2):

r = sins(nx/éL)
(1)
my = (dr/dx) = (5n/6L) sinu(nx/éL) cos (mx/6L)

in which the maximum radial displacement is taken as unity, and L is
the ring spacing. At rings B, C, and D, respectively (see fig. 2),

x =1L, 2L, and 3L. The determinant is then reduced to that given in
table III. In the presentation of this table advantage was taken of
symmetry. The buckling load may be obtained from this determinant by
the first method given above. Since, however, only the element in the
lower right-hand corner is a function of the load P, the determinant
will take the form [K + f(kLi], where K is a constant not dependent

on P,
k = \’P/(EI)Strr | (2)

f(kL) is given in table IIT, and (EI) is the radial bending

str..-
T
rigidity of the stringer and its effective width of sheet. The value

of kL at buckling makes the determinant vanish and may be obtained
from the equation

£(kL) = -K (3)

A curve of f(kL) against kL is given in figure 3 and may be used to
solve this equation in a convenient manner. Consequently the buckling

load of a cylinder can be obtained from the solution of a single 10-row
determinant.

It is useful to note than an upper and lower limit may be found for
the value of kL at buckling, such that

1.46 < kL < L4.L9
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L

The value 4.U9 corresponds to the lowest load at which a main-diagonal
element (in the tenth or eleventh rows) of table II becomes zero. The
value 1.6 is the value at which f(kL) = 0 and is approximate since it
depends on the assumption of equations (1).

It may be noticed that both methods require the evaluation of at
least one determinant. It is suggested that this evaluabtion be carried
out by the method of reference 3. The following remarks concerning the
application of this method in the present problem may be useful:

" (1) The operations table is symmetric about its main diagonal

(2) The value of the deferminant is equal to the product of the
main-diagonal elements of the auxiliary matrix (defined in

reference 3)

(3) The determinant will be equal to zero when the last main-
diagonal element of the auxiliary matrix vanishes (see

appendix A)

Discussion of Methods

The methods outlined in the preceding section are based on the <
simplified structure of figure 2. The following considerations underlie
the choice of this structure and of the methods of calculation:

(1) The most highly compressed stringer was considered of  paramount
importance at buckling, so that it was thought permissible to neglect
all other stringers in these approximate calculations. ‘This is equivalent
to considering the most highly compressed stringer as a column elastically
supported by the rings and sheet. The elasticity of the supports is
represented by the ring and sheet influence coefficients in the operations

table (appendix B).

(2) Points on the tension side of the cylinder will undergo only
negligible displacements and hence may be considered fixed. The rings
are therefore assumed to continue up to a point, near the tension side,
900 away from the most highly compressed stringer, and to be rigidly

fixed there (fig. 2).

(3) It would seem natural to continue the sheet up to the same point
as the rings. Because all stringers except the most highly compressed
one have been neglected, this would imply a single panel of sheet in
each bay, extending over 90°., The operations table, however, is set up
considering each panel with its edge reinforcements as a unit in which
only the corner points have independent freedom of motion (see, e.g.,
reference ). Therefore the action of the 90° sheet panel would be
determined by the displacements of its corners, with no possibility of v
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intermediate adjustment. Consequently the rigidity of the panel would

be greatly exaggerated. The decrease in the effective shear modulus of
the buckled sheet (reference 5) because of the larger angle subtended
would not provide a sufficient reduction in the shear rigidity. The
sheet panel was therefore taken to be smaller, the natural stopping point
being the position of the stringer next to the most highly compressed
stringer in the actual cylinder. Thus only the sheet which provides
additional stiffness to the most highly compressed stringer is considered.
This appears consistent with the assumption that all other stringers may
be neglected. A point with independent freedom of motion was therefore
considered in each ring at the intersection with the free edge of the
sheet. It may be remarked that, if the rings were to be terminated
there, the consequent reduction in the influence coefficients would in
general be negligibly small.

(4) The length of the cylinder was considered constant and equal to
" six times the ring spacing. For the three cylinders investigated, PIBAL
cylinder 10 and GALCIT cylinders 25 and 65 (fig. 1), this corresponds to
1.5, 1.5, and 1.2 times the respective diameters. For the fuselage of a
large modern transport this length would be approximately equal to the
diameter. The following table may be set up on the basis of experimental
results presented in the references given:

i Limiting Increase in buckling load
Loading value of at lower value of L'/D Reference
L'/D (percent)
Compression 1.5 6 at L'/D=1.0 6
Pure bending 2.0 ' 12 at L'/p = 1.2 7

The buckling load is practically independent of the length if the length-
to-diameter ratio L!'/D is equal to or larger than the limiting value
given. Examples of the increase in the buckling loads for cylinders
shorter than the limiting length are given in the third column of the
above table. The length assumed in the calculation will be in general
somewhat shorter than the limiting length; the error caused by this may
be estimated with the aid of the above table to be at most 10 or 15 per-
cent of the buckling load of a cylinder longer than the limiting length.
The effect of the length was investigated in some detail with test
cylinder 25 of the GALCIT series (reference 8). The buckling load for
this cylinder was calculated considering different numbers of bays and
the results are shown in figure ). It may be seen that the calculated
buckling loads approach some constant value in what appears to be an
asymptotic variation and that the difference in the buckling loads
obtained considering six.or eight bays is small. It was concluded that
the small improvement in accuracy given by a longer structure did not
warrant the increased amount of work required to obtain it.
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(5) The buckling load was calculated with the aid of the simplified
structure for test cylinders 25 and 65 of the GALCIT series (reference 8)
and for cylinder 10 of the PIBAL series (reference 9). Those specimens
were chosen because of their widely different characteristics (see fig. 1
and table I). Comparisons of the results of the present analysis with
those of experiment are presented in table IV and in figures L, 5, and 6.
The calculated buckling loads may be seen to be consistently higher than
the corresponding experimental values. The percentage errors obtained
are not considered excessive, however, upon comparison with the results
obtained earlier at PIBAL by means of strain-energy methods. One of those
solutions (reference 10) gave better results than the present investi-
gation, but required a prohibitive amount of work.

(6) Approximate deflected shapes at buckling obtained with the aid
of the simplified structure of figure 2 are given in table V for the three
cylinders investigated. The same table also gives results of - measurements
made on some actual test specimens after buckling (reference 6). It may
be noticed that fair agreement has been obtained between measured and
calculated values, so that an additional indirect experimental check has
been provided on the reasonableness of the simplified structure chosen.
Tt should be kept in mind that the measurements were taken after the
cylinders had buckled, and therefore may differ from the actual displace-
ments at the instant of buckling.

(7) Table V also shows that the radial displacements r of the most
highly compressed stringer at buckling are closely represented by

r = sinf(nx/6L) L)

where n = l, 5, or 6. The rotations my may be closely approximated by
my = (nn/6L) sin® 1 (nx/6L) cos (nx/6L) (5)

The values obtained with n = 5 represent a reasonable average of all
experimental and calculated deflections, and therefore this value of n
was chosen for the solution with assumed displacements which was described
previously. As a check, the buckling load of GALCIT cylinder 65 was cal-
culated by that method and was found to be 173Q pounds. The buckling load
calculated from the simplified structure without the assumption of dis-
placements was 1670 pounds (fig. 5), so that the error introduced by this
assumption is only 3.6 percent of the latter value. Cylinder 65 was
chosen since it is the specimen for which the agreement between assumed
and actual displacements is the poorest (table V). It should be remembered
. in this connection that it was shown elsewhere (reference 2) that the
methods of calculation used in this report are not too sensitive to errors
in the assumed deflected shape.
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v Divide the tenth and eleventh rows and columns by L, and all terms in
rows and columns (10) through (14) by the quantity Gefftd/L; The beam-

column terms appearing in the lower right-hand corner may then be written
as (EI)str /L3 times some function of kL. The ring influence coef-

r
ficients 77, m, rt, and so forth are equal to (EI)I,/d3 multiplied

by some function of r/d (reference 11). If all rows and columns are
divided through by (EI)r/d3 it will be noticed that the operations

table will be a function of the four nondimensional parameters

ol (EI)str

A=z r
1qa  (ED);

_ Cergbah (6)
(ED) L

r/d

: o |

» where r is the cylinder radius, (EI)r the bending rigidity of a ring
in its own plane, d the circumferential stringer spacing, Gers the
effective shear modulus for the sheet, t the sheet thickness, and the
other symbols have been previously defined. The effects of shearing and

extensional deformations of the rings, respectively, are represented by
the two additional parameters:

U
|

h Ar*/Ar
(7)

it

Y Ard2/ II‘
where I, 1is the moment of inertia of the ring cross section, 4, is
the area of the ring, and A* is the effective shear area of the ring

Cross section. Reference 11 shows, however, that the effect of these two
parameters is in general negligible.

It has been shown in reference 12 that the buckling load of g mono-
coque cylinder depends on the parameter A, Two additional parameters
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py physical reasoning to be r/d and
hly compressed stringer

is the buckling strain of a sheet panel. An experi-

the fact that these parameters approximately
henomenon in monocogque cylinders is given in refer-
n that two of the parameters found in the present
as those found in reference 12, while the param”
since the shearing rigidity Gerf

were established in that reference

¢/ecp, Where € 18 the strain in the most hig

at failure and €,y

mental verification of
control the buckling p
ence 13. It may be see
development are the same
eter ' includes the quantity €/€ops

was found in reference 5 to be closely approximated'by

Geff _y+ (1 - N)e—N ¢/ecr | | } (8)

Go

where

N = 0.0275 [(enr/d) + 1] (8a)

and Gq is the shear modulus of the sheet material.

e buckling load, plotted against

Curves of kL, which represents th
figure 7 for all the cylinders of

the parameters A and I are shown in
reference 8 with r/d = 6.32. An insufficient number of cylinders is

available so that the position of these curves is not definitely determined.
1t may be stated, however, that the results presented do not contradict .

the validity of the four parameters established.

LN

CALCULATION OF BUCKLING LOAD OF A CYLINDER WITH A CUTOUT

Experimental Investigation

The methods developed previously were extended to include cylinders
with cutouts. A cylinder with a cutout (PIBAL cylinder 82, fig. 8), which
consisted of a thin circular shell reinforced by six stringers and four
evenly spaced rings was therefore constructed and tested. The cutout
extended circumferentially for 90° on the compression gide of the cylinder.
Pure bending moments were transmitted to the ends of the cylinder through
heavy rings which could be assumed rigid. The test rig was the same as
that used in the cylinder tests of reference 13. This cylinder buckled
when the load in the most highly compressed stringer (stringer 2 in fig. 8)
was 5L00 pounds. This load corresponded to a total applied moment of
158,000 inch-pounds. Photographs of the buckling cylinder are shown in

figures 9 and 10.
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Method of Calculation

The results of the theoretical investigation indicated that the
simplified methods evolved for complete cylinders are not satisfactory
for cylinders with cutouts. For such cylinders, the distortion under
load depends primarily on the geometry of the cutout, so that only dis-
placements in the vicinity of the cutout require consideration in the
operations table.

With consideration of the symmetry of the cylinder, an operations
table including only the displacements rgy and rg, and the rotation

mygo (see fig. 8) was set up. The resulting buckling load was, for all

practical purposes, the same as that obtained through the use of an
operations table which permitted all possible generalized displacements
at all the joints of the cylinder. Hence the assumption that only the
Joints in the vicinity of the cutout need be considered in the operations
table was justified for the cylinder with a cutout. The actual experi-
mental deflected shape of PIBAL cylinder 82 (figs. 9 and 10) shows that
the major distortions took place in the vicinity of the cutout, and that
all other joints may be assumed to have had zero displacements.

Cylinders encountered in practice, however, will be of a more compli~
cated construction than PIBAL cylinder 82, and hence the simplified
operations table described above may not be sufficiently complete.
Depending on the size of the cutout, it is suggested that the operations
table be expanded so as to irclude all the joints surrounding the par-
ticular cutout.

The buckling load obtained for PIBAL cylinder 82 considering only
three generalized displacements was 8,00 pounds. The discrepancy between
the theoretical and experimental buckling loads was attributed, mainly,
to the inaccuracy of the value of the effective shear modulus Gerr used

in the calculations. This value was 0.71Gy and was taken from equa-

tion (8). This equation is based on tests on panels buckled because of
compression. The sheet panels ia the present cylinder, however, are
under the action of combined compression and shear. No values for the
effective shear modulus of curved panels under such a loading could be
found in the literature, but, according to data obtained from flat panels
(reference 1&), it appears that the correct value of Geff should be

considerably lower. Furthermore, as is shown in the next section, there
is reason to reduce the shear modulus even further.

The calculations for PIBAL cylinder 82 were therefore repeated with
an assumed value of Ggpp = 0.1Gy. The resulting buckling load was

5900 pounds, which may be seen to be in good agreement with experiment.
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Reduced Effective Shear Modulus

If a panel of sheet is not in a buckled state, the relation between
shear stress T and shear strain vy is simply Hooke's law:

T = Go}’ (9)

If the panel is in a buckled state, a relation analogous to equation (9)
will still hold between the average shear stress T, and the average

shear strain Y.y, provided that an effective. shear modulus Ggpp 18

used in place of Gp. In other words,
Tay = GerfYav (10)

and Ggpp = Gg 1f the panel is not buckled. The value of Ggpp will

represent the complex state of stress of the buckled panel, and will
presumably vary with panel dimensions and type of loading.

The value of Ggryp is the proportionality factor between the average

shear stress and the average shear strain. In problems of instability,
however, it is desired to know the relation between a small increase in
stress d(Tav) and a small increase in strain d(yav). This relation y

will again have the same form as equation (9), if only a reduced effective
shear modulus Geffred is used in place of Gy. In other words,

d(‘av) = Geffred d(yav) ‘ (11)

Thus this new modulus represents the resistance the panel will offer
against distortions additional to those represented by vy_,. According

to the previous discussion, this new modulus will also depend upon the
dimensions of the panel and upon the amount of shearing and compressive

loads present.

If equation (10) is written in differential form as

- d(Geff)’
d(TaV) = |7av d(yav) + Gers d(yav) (12)
comparison with equation (11) indicates that .
_ d<Geff) |
Ceffooq = Geff +_73Vlm (13) R
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The following remarks may be made about the reduced effective shear
modulus Geffred:

(1) Geffreq = Go when the panel is not in a buckled state

(2) Geffred = Ggry When the average shearing strain in the panel

is zero immediately before buckling

(3) Geffred = Ggpp when there is no change of shearing strain

during buckling of the structure under consideration

(L) Geffneq < Geff 1in all other cases, since in general the modulus

Gerr decreases with increasing shear strain Yays» S0 that the second
term in the right-hand side of equation (13) is negative

The latter case applies to the cylinder with a cutout. The low
value assumed for the shear modulus in the calculations is therefore
plausible.

Polytechnic Institute of Brooklyn
Brooklyn, N. Y., August 31, 1948
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APPENDIX A

BASIC THEORY

The procedures developed in this report for the calculation of the
buckling load of a monocoque cylinder are based on methods developed in
reference 2 which make use of an operations table similar to that used
in Southwell's method of systematic relaxation. These methods are out-
lined here, more rigorous proofs being given in reference 2. Rigorous
proofs are only given here for some modifications of these methods which
were not discussed in that reference.

Consider several points in the structure in question distributed so
as to cover the entire structure. Let these points be numbered consecu-
tively from 1 to n. The generalized force exerted on joint i by a gener-
alized displacement x; at joint j (all joints but j being considered
temporarily rigidly fixed) may be denoted by ajjxj. The quantity a4 j
is called an influence coefficient. If F; 1is the generalized external
force acting at joint i, the equilibrium condition for the ith joint is

n

Fi + E ainj =0 (Al)

J=1

provided that the principle of superposition is valid. If equation (A1)
is written for every joint in the structure, a set of linear simultaneous
equations will result with generalized displacements as unknowns. The
array, or matrix, of the coefficients of this set of equations is called
the operations table and may be written as

all 3.12 o o o all . o . alJ « e e aln

. ap] ap2 . - . 829 . . . 823 . . . 82p
An =1aj] aj2 « » - a4 ¢ o aij e o« 84n (AZ)

ajl aj2 o e . aji o s e ajj . e e ajn

anl any « « ang o ¢ anj « < « 8nn

As a consequence of Maxwell's reciprocal theorem ajj =aji-
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Equation (Al) represents the equilibrium conditions for the given
structure in terms of displacements. In general, the determinant A,

will not be equal to zero; then, only one set of displacements may be
found which will satisfy the equilibrium conditions. If the determinant
A, vanishes, however, more than one such set of displacements will exist.
This is physically possible only at neutral equilibrium, or, which is

the same, at a buckling load. This leads to what was called in refer—
ence 2 the Determinant Method, the basis of which is the fact that the
lowest load at which the determinant A, vanishes is the lowest buckling

load.

A proof will now be given of the fact that in general at the lowest
buckling load the last main-diagonal element of the auxiliary matrix of
the method for evaluating determinants given in reference 3 is equal to
zero. Let the symbol A; stand for the determinant

all a12 e e e ali
8.21 822 « e 32i

Ay =00 oo oo (A3)
aj]1 832 .« . .+ 834

The value of this determinant is equal to the product of the first i main-
diagonal terms of the auxiliary matrix. If auxiliary-matrix elements are
denoted by the symbol ajj, then

i
Ai = I ll aJJ =411 ao2 . . . Ak = o ai4 (ALL)
J:

Let Ay be the first of these determinants to vanish; then theorem 2
of reference 2 gives

Ak =Ak+1 = . . . =45 =0 (45)

where A, 1is the determinant given in equation (A2). Two cases may
then be considered:

Case 1; k = n.- In the case where k = n, A, 1is the only one of

these determinants which vanishes. By equation (4&l) the only factor
which is contained in A, and in no other Aj determinant is ayy,

which, as was to be proved, must therefore vanish.

Case 2; k < n.- In the case where k < n, the method of reference 3
fails to give any terms beyond ayy, which of course is zero. Here nn
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is obviously not the first term to vanish, but in this case several of
the higher buckling loads are jdentical with the first. This case is ' .
expected to occur rather infrequently.

The Energy Method of reference 2 1is based on the condition that the
second variation of the total potential energy must vanish at buckling.
This condition may be written as

Q= ;?: ;f: a3 3%iXj = 0 | | (46)

=1 =1

This'equation is satisfied at buckling by the buckling displacements.
In the Energy Method some of these displacements, say Xpy Xp+ls T %o

Xp, are guessed; then the others are obtained from the conditions

9 =g k=1,2, . . ., p-1 : (A7)
Xk .

The matrix of the coefficients of these simultaneous equations, including
the constant terms, is the reduced matrix A', where:

all 312 « o al,p_l a'l,p
a1 %2 -+t %2,p a's p -
A' = | v o e e e e e e e e e e e e e e e " (a8)
ap-1,1 @p-1,2 + + - @p-1,p-1 @'p-1,p
1 1 1
a'p,1 a'p,e v+ r2'ppl Fpp
in which
n
alip = alpy = 2 215X
j=p
and

n n
a'p,p = 2 2 835K

i=p j=p .

Tt will now be proved that the Determinant Method may be applied to the
operations table of equation (A8). . s

]
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It is well-known (see reference 15) that any quadratic form Q may be
put in the form

n
Q=) bi(15)? ' (49)

i=1
where the b; quantities are constants, and

n

Li = E C X (A10)
J=1
where the cj3 quantities are constants. It is assumed that there are

n linearly independent quantities Li. This assumption entails no loss

of generality since in the case in which it is not true some of the
constants by will be zero.

By means of equation (A9) and table 2 of reference 2 the following
table may be set up: ‘

: Type of
Sign of by Sign of @ Classification of (@ equzgibrium

All, less Q <0 always Negative definite Stable
than zero (Q =0 if xj = O) nonsingular

Varying; none, Q may be positive, Indefinite Unstable
Zero negative, or zero nonsingular
All, greater Q >0 always Positive definite

than zero (Q =0 if x5 = O> nonsingular Unstable
Some, zero; all [Q = 0 or Negative definite

others, negative| Q < O singular Neutral
Some, zero; . Q may.be positive, Indefinite singular| Unstable
others, varying | negative, or zero

Some, zero; all |Q =0 or Positive definite Unstable
others, positive| Q > 0 singular
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Two conditions for neutral equilibrium have been thus set up:

(1) The vanishing of the determinant A, of the quadratic form Q

(2) The fact that some of the Dbi's equal zero, while all others
are negative

As both conditions are necessary and sufficient, they are equivalent and
may be used interchangeably.

When some of the displacements are guessed as previously explained,
the quadratic form Q becomes the reduced quadratic form Q', where

N

p-1
Li' = cp' + 2 cj'xs ' (A12)

The statements of the above table may now be applied to the quadratic
form Q', since Q' 1s the value the quadratic form Q will take on
when the displacements Xp, . . ., Xp &re assumed. Neutral equilibrium -

will then exist when some of the by's are zero and all others are neg-
ative. But this condition is equivalent to the condition that the determi-
nant corresponding to the quadratic form Q' must vanish. This determinant
is obtained by multiplying out the right-hand side of equation (A11) and
expressing the result in the form

p-1 p-1 p-1 p-1
Q' = E E aj jXiXj + E , a'ipxi + 2_ a'piXi + a'pp (A13)
i=1 j=1 i=1 j=1

The determinant corresponding to Q' will then be seen to be identical
with A' of equation (48).

It therefore follows that the vanishing of the determinant A' of
equation (A8) corresponds to neutral equilibrium. If the displacements
Xp, * ot s Xp Were not chosen exactly equal to the displacements of

the structure at buckling, an approximate value of the buckling load will -

be obtained rather than an exact one. It was proved in reference 2 that
this approximate load will be higher than the actual one.
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APPENDIX B

GENERAL FORMULAS AND NUMERICAL EXAMPLE

In this appendix is presented the procedure for the determination
of the influence coefficients required in setting up the operations
tables II and III. Since many of the formulas used in the analysis are
scattered throughout the literature, some of these are given here,
together with appropriate reference. When a formula is not listed, refer-
ence to its source is given. A numerical example is also given illus-
trating both methods suggested for the calculation of the buckling loads
of cylinders without cutout.

Influence Coefficients

The operations tables (tables II and III) contain three types of
influence coefficients,.which represent the effects of the rings, the
sheet covering, and the stringers. The methods by which each type is
determined are outlined below.

Ring influence coefficients.- The ring influence coefficients are

characterized by the symbol ™, as, for example, ?%M, g%M, or EBF.
These coefficients may be determined from reference 11, in which they
may be seen to depend on the three parameters f, ¥, and £, where §
is the central angle of the ring segment, and ¥ and € are defined in
equations (7). Any one of the three following ways may be used for the
calculation of these coefficients:

(1) General formulas are given in equations (20), (27), (28), and
(29) of reference 11. As an example, the formula for rty is repeated

here with a slight change in notation:

~ a3 —~ a3 3 0Ly p3 '
- 9 - % = L2 S S
M ED: T M GED: 0P T Goe (BL)

where

-Ap = fyp1 + (/) [(1/5) - i]ftfé

r
B (ED),.
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and

r§%7 = fa1 + (1/y) [ng + (1/@)(fA3jJ s (1/241/8 + [/ - %]2fAh:}

in which the quantities f are functions of the central angle B and
are given in reference 11 by equations (24) and, for specific values
of B, by table II and figures 3 to 13.

(2) Influence coefficients obtained from the formulas mentioned
under item (1) are tabulated in tables III and IV of reference 11 for
specific values of the parameters £, vy, and €.

(3) From the tabulated values mentioned in item (2) above, curves
were plotted which are presented in figures 1l to 85 of reference 1l.
It should be noted that in general these curves are accurate only for

values of f 2z 15°.

Sheet influence coefficients.- The shear in the sheet covering is
represented by the influence coefficients containing the gquantities «
and Ay, as, for example, 2ar%AI or 2atapft dy. The quantities «

may be determined in good approximation from the formulas

~

a, = 0.1B

a = -0.5(1 - 0.01666 + - - B2) \ (B2)

an

~0.008333 - - - B(1 + 0.01L4286p°)
J

taken from page 27 of reference 11. It should be noted that in this
reference ap, ay, and ap are denoted as rq/(Lq), tq/(Lq), and
nq/(qu), respectively.

The quantity"AI is given by

td
AT = Gepp —= (B3)

where the effective shear modulus Ggpy is given by equation (8) of the

present report. .
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The buckling strain €cr Of a sheet panel appearing in this equa-
tion was obtained by means of Redshaw's formula:

fer < (Gflat/e) * \keflat/2)2 * (chrved)2 (BL)
where
k2
€flat = m (E) (B5)

as shown in reference 16, in which k' is the end-fixity coefficient,
vV is Poisson's ratio, and ‘

¢ = 0.6(t/r) Lo 1.7 x 1071 (x/t)? (86)

curved 1 + o,ooh(E/FCy)

as shown in reference 17, in which FCy is the yield stress of the

material.

The effect of normal stresses in the sheet covering is taken into

account by an effective width of sheet as discussed in the next section.

Stringer beam-column influence coefficients.~ The beam-column
effects in the stringers are represented by the influence coefficients
containing the load P, as, for example, (P/Dl>(l - ¢c) or Pks/D.

A complete list of beam-column influence coefficients is presented in
tables VI, VII, and VIII in which the sign convention as well as defi-
nitions of symbols are given. All these coefficients are functions of
the quantity k defined in equation (2). The following formula which
was derived in reference 18 on the basis of work contained in reference
is suggested for the calculation of the effective width 2w:

2/3
2w = (1/e)(d/r) 40.36 + 1.535 [ (6/d) (re - 0.3t)r1/2] / (B7)

If the load P causes a stringer stress which is higher than the
proportional limit of the material, the modulus of elasticity E which

19
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appears in equation (2) gus? be reduced in an appropriate manner. In
this investigation Von Karman's formula was used:

Ereq = b EEt/(4E_+ {E)° | (88)

where Ey is the tangent modulus.

Numerical Example

As an example of the application of the methods suggested for the
calculation of the buckling load of cylinders without cutout the buckling
load is determined here for GALCIT cylinder 65 of reference 8. The
characteristics of this cylinder are given in figure 1. Table I is
readily set up with the aid of these characteristics and the equations
listed in the previous section. The influence coefficients required

for tables II or III can then be calculated.

Ring influence coefficients.- The values of the ring influence
and &; (see table I) happen .

coefficients corresponding to BI’ Y1
to appear in tables III of reference 11. However, since these tables
do not contain coefficients corresponding to EII’ it is necessary to .

use values interpolated from the appropriate curves of reference 11.

The following values were obtained for the ring influence coefficients:

Ring segment 1 Ring segment I1

-~y :EL = 6.393 -~ Ell = 8.65
MI\EI, . MII\EIr :

)

~ [da77°
= 109.0 _ by [\ g7 ) = 330

Ty | ==— | = =20.38 rn -33.
TIMI\ET,. 0.3 : M1\ BTy 33.0
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[Y
q.3 — a3
tow | L] = _656.6 % L - 200
. trMI(%Ir> 56. ™M1\ EI,
4.3 ~  [a.3
~ [97) I\
ttMI<§T;> = 4999 i gr) = 290

<% 2>
g (- | = -8.531 -
T\EL,,
d°
I‘I‘FI E‘f; = 7&.86

b L) = —659.7

Sheet influence coefficients.- The quantities a of equation (B2)
have the following values:

* Bay I Bay II
ap = 0.0261 No sheet in this bay
at = -0.499
an = -0.00218

Stringer beam-column influence coefficients.- For an assumed load

P = 1550 pounds a typical set of calculated results is given below (see
tables I and VI and equations (2) and (B8)).

P (o] Ered

Ered Istr 3
(1b) (psi) (psi) T k kL sin kL cos kL

1550 | 37,300 | 7.056 x 100 1,000 0.6225 | 2.1,90| 0.60646 | -0.79511
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The beam-column influence coefficients required for table II are

then
Pks _ 281.31 ELEL;:_El = 228).6
Dl kD

PA -c¢) . 1337.6 2P (5 - ki) = 6191.7
D, KDy

No beam-column influence coefficients ﬁeed be calculated if table III
and figure 3 are used.

Calculation of buckling load by table II.- The state of stability

of the structure at a load of P = 1550 pounds may now be investigated
by introducing all the above influence coefficients into table IT and
evaluating the corresponding determinant. The results corresponding to
the assumed load of 1550 pounds, as well as those for the loads of 1650,
1680, and 1715 pounds, are presented in figure 5. In this figure are
plotted both the values of the determinant and the values of the last
main-diagonal term ap, of the auxiliary matrix of reference 3. The
intercept of the curves in this figure may be read off and corresponds
to the buckling load. It should be noted that only the stringer beam-
column influence coefficients vary as the assumed load is changed.

Calculation of buckling load by table III.- The walue of the

quantity K of equation (3) was found by the method of reference 3 to
be -5.472. From figure 3, this value may be seen to correspond to

kL = 3.4, from which Por = 1730 pounds. Care must be taken that a
reduced modulus (equation (B8)) be used if the stress at buckling is
above the proportional limit.
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APPENDIX C

SYMBOLS

determinants or matrices

effective cross-sectional area of stringer

effective cross—sectional area of ring
effective shear area of ring cross section

reduced matrix
rings
Young's modulus

bending rigidity of a ring in its own plane

radial bending rigidity of stringer and its
effective width of sheet

reduced modulus

tangent modulus
yield-point stress
generalized external force
effective shear modulus

reduced effective shear modulus

shear modulus of sheet material under nc com-
pressive load

moment of inertia of ring cross section plus
effective width

23
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PR moment of inertia of stringer plus effective width of
r sheet for radial bending '

K constant

L ring spacing

Ly linear function

L'/D ratio of total cylinder length to cylindér diameter

Mg moment causing bending of stringer (vector pointing
in tangential direction)

N moment causing bending of ring in its plane; also
0.0275 [(2nr/d) + 1]

P axial stringer load '

Por load in the most highly compressed stringer at thé instant
of buckling

Q gquadratic form

Q! reduced quadratic form

R radial force

T tangentiél fofce

a4 j element of operations table

a'ip element of last row or column of reduéed matrix

bi, by' constants

Cj’ cj' constants

d circumferential stringer spacing

f function of B

£ (kL) function of kL

i, J indices

k = \’P/(EI)Strr
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p

r

~ ~~
rr, rm, rt,

and so forth
t

2W

1]
nn

Uy, at, an

P
4

€

€er

chrved
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end-fixity coefficient

rotation causing bending of stringer (vector pointing
in tangential direction)

number of stringers; number of generalized displacements;
rotation causing bending of ring in its plane

index
radius; radial displacement

ring influence coefficients

sheet thickness; tangential displacement
effective width of sheet
longitudinal axis of stringer

generalized displacement

parameter
parameter

Gerstd
parameter <79£§——l>

auxiliary-matrix element
last main-diagonal element of auxiliary matrix

functions of P required for sheet influence
coefficients

central angle of a ring segment (d/r)
parameter; shear strain
strain in most highly compressed stringer at failure

buckling strain of a sheet panel

buckling strain of nonreinforced circular cylinder
under uniform axial compression




(9}

T

'Subscripts:

A, B, C, D

F

M

NACA TN 2354

buckling strain of flat panel under uniform compression

Poisson's ratio
parameter
compressive stringer stress

shear stress

rings
fixed
movable
average
experiment
stringers

regions
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TABLE IV

COMPARISON OF CALCULATED AND EXPERIMENTAL BUCKLING LOADS

ortinaer | Meodef | CgTee | BRI My
(1b) (1b)
GALCIT 25 Table II 955 769 2.2
GALCIT 65 Table II 1670 1371 21.8
GALCIT 65 Table III 1730 1371 26.2
PIBAL 10 Table II L850 3754 29.2
TABLE V

ASSUMED, CALCULATED, AND EXPERIMENTAL DEFLECTED SHAPES

[Fory sign convention and nomenclature see fig. 2:|

Shape Ty re rp mp ' mg -
sinh<%%) 0.06250 | 0.56250 | 1 0.22672(1/1) | 0.68016(1/L) | i
sin5(%f> 0.031250 | 0.48713 | 1 0.14170(1/L) | 0.73636(1/L)

' sin6<£%> 0.015625 | 0.42188 | 1 0.085020(1/L) | 0.76520(1/1)
Eézﬁuﬁ%éd%o -0.0169L9 | 0.50229 | 1 0.15086(1/L) O.BOOll(l/L)
%éﬁgl;ﬁé)zs | o0.066323 | 0.48355 | 1 0.093608(1/L) | 0.82808(1/L)
%ﬁﬁgialjiia)és -0.16089 | 0.306k0 | 1 | -0.22075(1/n) | 1.1631(1/L)
WL E | o | oen | 1
o iniatan) | 0.0370 | 0.204 1
%ﬁigiii;§§£a§§ 0.0588 0.112 1 , .
GALCIT cyl. 35 0.0893 0146 1 )

(Experimental)
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- TABLE VI
- BEAM~COLUMN INFLUENCE COEFFICIENTS
[Compression]
Forces
(1)
Displacement Unit
Fy My Fg Mg
Both ends _p ks pi-c ks pl-=-c
oA fixed P oy Fo5] P, F ]
1 -c¢c P s - klLc 1-c¢ PLk - s
-p R P - L
" Dy kD, Dy kD
55 P ks P 1-c -P ks P l-c¢
1-c P Lk - s l-c P s - kLec
mp -P -= P - =
D k Dy Dy k Dy
End A k 1 k '
-P — -P = P 0
- 1 fixed tDs Dy tDy -
1 L 1
m -P = -pP = P = O
- A End B D2 D2 D2
pin-
55 jointed P k p 1 -p k 0
tDy Dy tDy
6a Both -E 0 - ’E 0
ends
pin-
&g Jjointed - % 0 % 0
o) =2(1 - ¢) - ks s = sin kL, v
Do =1 = (kL/t ¢ = cos kL
: (/e t = tan kL
k“ = P/EI
Sign convention
Forces on constraintsg
- X r L 1
P —» <—- P
- A B

m,M
5,F P, positive as shown
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TABLE VIT

BEAM~-COLUMN INFLUENCE COEFFICIENTS

[Axial end load P equal to Zeré}

Forces
Displacement Unit
) Fy My Fg My
6, | Bothends | -12Z% | 6% 128 | B
. 3 2 3 2
fixed L L L L
EL EI EI EI
my -6 = -l == 6 = -2 =
L2 ~ L L2 L
EI EI EI ET
6p . 12 == 6 = -12 = 6 ==
13 1.2 L3 L
my 6 E | 2 6 2 -, BL .
L L
EI E EI -
o | ma | 0B |53 5T
ixe L 1 L
m, -3 EL -3 EL 3 EL 0
End B L2 L L2
" pin-
Jjointed E 1
55 35 3E | & 0
L’ L i
&, Both 0 0 0 0
ends
pin-
5 jointed 0 0 0 0
Sign convention

Forces on constraints
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- TABLE VIII
- BEAM-COLUMN INFLUENCE COEFFICIENTS
[Tensioﬁ]
Forces
Displacement Unit (1)
Fy My Fg Mp
| Both ends kst (et =1 ks! c' =1
5 - -p 5 -P p X5 -P
A fixed Dyt Dyt Dy! Dy!
r _ 1 — ! [ _
my _p (c '1) _ PfkLc : s > P (c 'l) _ %(S'D 'kL>
1 1T - 1 LI
5p P EET P LE___Tll -p EET P LE___Tll
Dy Dy Dy Dy
t o1 t - kL c! - [
- _P(CD’) _I{E<SD'> 'P(D'l) _EkLcD's>
1 1 1 1
End A k 1 K
) b4 fixed F t'Do! P Do! P t'Dy" °
my -p L -p P 0
- End B D2 D2 D2
P K 1 k
5 jointed R S P — -P 0
B t1Dy! Dy! t1Dp!
P P
FS) Both -— 0 -
A L I 0
ends
pin— P P
501 = 0 - = 0]
&g Jjointed I L
Ippt = 2(1 - ¢') + KLs' s' = sinh KL
Dy! = (kL/t) - 1 ¢! = cosh kL 4
: (/%) t' = tanh KL
k“ = P/EI
Sign convention
Forces on congtraints
x Il= . ’1'
P -— —3» P
- A B

8,F P, positive as shown
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§ u 30 " )
l"8 ~ 5"p- ) i
] 12" / C ¢ = 0,012
%jé' 7 [ 245-T36
Stringer; A ; alclad
1'783:'I"‘4 ; 7
Q. -
8‘1_11" 5 2
—75 ’ a~1 2!
ing;
243 -%‘4 PIBAL cylinder 10

64 t
t = 0.010™"

SOSSONNNNY

RARARERIRRARIRY

N

NN NN

—— - ——

GALCIT cylinder 25

Cylinders 25 and 65
0.420" - 40

/6‘_1‘ [—'14"’{' t = 0.010"
1" 17S‘T
0.028" 0.320 ' Duralumin
Stringer; |

178-T
0.366"

.\

"NNN\SKXTN

LSOO

EzZZ3—0.0796

z2 SR Byasl
Ring; " 1

178-T ' GALCIT cylinder 65

Figure 1.- Cylinder characteristics.
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- |

yr7974 LLLLL pI7974 LS
: Free " Region II
I IT I edge
of
sheet
N
I I I ‘Region I
P e e s ] e et e ——— R — e e Y e e e — e P
“Ia B C DN C B Al
L 1L 1, ~.Stringer 1
Lea
G,

Sign
convention ¢ DPosition of
) stringer 2 in
“t\ complete cylinder

~ NACA

Section A-A

Figure 2.- Simplified structure for setup of operations tables.
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kL,

2 .
Figure 3.- Dlot of f(kI) against kL. f(kI) = S ( sin kI,

B (-0.91592 2852 - 0.44020 cos kL
D |

kL
- 0.47180kL sin kL + 1.3561>.
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~ ! c
4 * 10— \i —
& Number Table II
" 9} Symbol of c
- 9 bays | N
i N/ N /b
g ok X 2 0 ZA— 4
7 A 4 0ty - 769 Ib 4
g 0 6 1 CI‘eXp / A/
g -2+ 0O 8 2 7
®
D /
(&)
/}/ ~_NACA
-6 . -
0 200 400 600 800 1000
P, lb

Figure 4.- Determination of buckling load of GALCIT cylinder 25 for two, four ,
six, and eight bays. ’

10 x 103

[o>}

L1

Do

.04

Determinant value, A
P

(&)

a A “nn
e -.04
~-Naca
-4 I 1
1300 1400 1500 1600 1700 1800
P, 1b

-2

N
P =1
[ Oy = 111D \\)\i X 0
| /)[/C

-.08

Figure 5.- Determination of buckling load of GALCIT cylinder 65 by table II.

2 x 108 J(
g N
Q
3 1
E \\
z
B 2
g D = 3754 1b—] N
g N L DNy .
£ 0 . 0
g /V 5
9] ann
a — -“nn -2
1 1 -
"o 1000 2000 3000 2000 5000 A4
- P, 1b

Figure 6.- Determination of buckling load of PIBAL cylinder 10 by table II.
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BN 9210
, 1735\0\
100 ~{ L
\ -
N

0 208 \

0237 N
— 100 1105
\\\
102 o 119
\\
9 | , )
107 5 5 1.0 1.5 5.0 5.5 3.0
K,

Figure 7.- Experimental variation of KkI. with parameters A and r.
r/d = 6,32, Value of I given for plotted points.
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Figure 9.- Side view of PIBAL cylinder 82 after buckling.
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